	Об ан	вторах книги	20
Вве	едение		21
Тол	ковый	словарь условных обозначений, используемых в книге	29
Глава	1. Осног	вные положения	33
1.1	Импе	еданс стационарной линейной цепи	
	c coc	редоточенными параметрами	33
1.2	Отно	шение мощностей	35
1.3	Прав	ила подобия	38
	1.3.1	Масштабирование физических размеров	39
	1.3.2	Масштабирование мощности	42
	1.3.3	Изменение масштаба времени	43
	1.3.4	Масштабирование импеданса цепи при сохранении	
		неизменными напряжений в ней	47
	1.3.5	Масштабирование диэлектрической проницаемости	49
	1.3.6	Масштабирование магнитной проницаемости	52
1.4	Поня	тие резонанса	53
1.5	Допо	лнительная информация для искушенных:	
	максі	имальный отклик линейной системы на цифровой	
	входн	ной сигнал	60
Глава	2. Пара г	метры линий передачи	69
2.1	Телег	графные уравнения	71
	2.1.1	Как здорово работает линия связи из колючей проволоки	76
	2.1.2	Принцип сохранения токов	78
2.2	Выво	д телеграфных уравнений	82
	2.2.1	Определение волнового сопротивления Z_C	83
	2.2.2	Частотная зависимость волнового сопротивления	85
	2.2.3	Вычисление волнового сопротивления \mathbb{Z}_C по	
		известным значениям параметров R, L, G и C	86
	2.2.4	Определение постоянной распространения	89
	2.2.5	Определение постоянной распространения через	
		параметры R, L, G и C	91

2.3	Идеал	вная линия передачи	93	
2.4	4 Сопротивление по постоянному току			
2.5	-	одимость утечки по постоянному току	103	
2.6	_	охностный эффект	104	
	2.6.1	Природа поверхностного эффекта	105	
	2.6.2	Вихревые токи в проводнике	109	
	2.6.3	Низкочастотное и высокочастотное приближения для		
		последовательного сопротивления	111	
2.7	Индун	стивность, связанная с поверхностным эффектом	114	
2.8	Модел	пирование внутреннего импеданса	116	
	2.8.1	Инженерные модели внутреннего импеданса	120	
	2.8.2	Особенности расчета в случае проводников		
		прямоугольного поперечного сечения	123	
2.9	Модел	ть поверхностного эффекта в виде концентрических колец	125	
	2.9.1	Моделирование поверхностного эффекта	126	
	2.9.2	К вопросу о моделировании поверхностного эффекта	129	
2.10	Эффе	кт близости	130	
	2.10.1	Коэффициент близости	132	
	2.10.2	Эффект близости в случае коаксиального кабеля	136	
	2.10.3	Эффект близости в случае микрополосковых		
		и полосковых линий	137	
	2.10.4	Еще несколько слов по поводу эффекта близости	137	
2.11	Шеро	ховатость поверхности	143	
	2.11.1	Степень влияния шероховатости поверхности	144	
	2.11.2	Пороговая частота эффекта шероховатости	145	
	2.11.3	Шероховатость материалов печатных плат	145	
	2.11.4	Контроль шероховатости	147	
2.12	Влиян	ние диэлектрика	149	
	2.12.1	Тангенс угла диэлектрических потерь	154	
	2.12.2	Правило смешения	155	
	2.12.3	Тангенс угла потерь однородной смеси диэлектриков	158	
	2.12.4	Вычисление тангенса угла потерь в случае, когда		
		коэффициент заполнения q не известен	160	
	2.12.5	Причинность и соотношения функций цепи	161	
	2.12.6	Вычисление $ \epsilon_r $, соответствующего измеренному		
		тангенсу угла потерь	167	
	2.12.7	Соотношения Крамерса-Кронига	173	
	2.12.8	Комплексная магнитная проницаемость	174	
2.13		едовательный импеданс возвратного проводника	174	
2.14	14 Замедляющий режим во внутрикристалльных межсоединениях 17			

Глава	3. Рабоч	ие области	181
3.1		ель распространения сигнала	182
	3.1.1	Получение эквивалентных параметров для программ	
		имитационного моделирования	188
3.2	Иера	рхия рабочих областей	189
	3.2.1	Линия передачи всегда остается линией передачи	192
3.3	Необ	ходимая математика: входной импеданс и передаточная	
	функ	ция	194
3.4	Обла	сть сосредоточенных параметров	198
	3.4.1	Границы области сосредоточенных параметров	198
	3.4.2	П-модель	200
	3.4.3	Аппроксимация функции H разложением в ряд Тейлора	201
	3.4.4	Входной импеданс (область сосредоточенных	
		параметров)	203
	3.4.5	Передаточная характеристика (область	
		сосредоточенных параметров)	206
	3.4.6	Переходная характеристика (область	
		сосредоточенных параметров)	209
3.5	RC-o	бласть	212
	3.5.1	Границы RC-области	213
	3.5.2	Входной импеданс (RC-область)	215
	3.5.3	Волновое сопротивление (RC-область)	216
	3.5.4	Особенности поведения линии передачи в RC-области	217
	3.5.5	Постоянная распространения (RC-область)	220
	3.5.6	Коэффициент передачи (RC-область)	220
	3.5.7	Нормированная переходная характеристика (RC-область)	222
	3.5.8	Компромисс между длиной линии и скоростью	
		передачи (RC-область)	223
	3.5.9	Аналитическое выражение для переходной	
		характеристики (RC-область)	224
	3.5.10	Оценка величины задержки (RC-область)	225
3.6		бласть (область постоянных потерь)	231
		Границы LC-области	232
	3.6.2	Волновое сопротивление (LC-область)	234
	3.6.3	Влияние последовательного сопротивления на	
		результаты рефлектометрических измерений	236
	3.6.4	Постоянная распространения (LC-область)	240
	3.6.5	Возможность возникновения сильных резонансов	
		в LC-области	244
	3.6.6	Согласование линии передачи, работающей в LC-режиме	247

	3.6.7	Компромисс между длиной линии и скоростью	
		передачи (LC-область)	252
	3.6.8	Смешанный режим работы (LC- и RC-области)	252
3.7	Облас	ть поверхностного эффекта	253
	3.7.1	Границы области поверхностного эффекта	254
	3.7.2	Волновое сопротивление (область поверхностного	
		эффекта)	255
	3.7.3	Влияние поверхностного эффекта на результаты	
		рефлектометрических измерений	257
	3.7.4	Постоянная распространения (область	
		поверхностного эффекта)	259
	3.7.5	Возможность возникновения сильных резонансов	
		в области поверхностного эффекта	263
	3.7.6	Переходная характеристика (область поверхностного	
		эффекта)	266
	3.7.7	Компромисс между длиной линии и скоростью	
		передачи (область поверхностного эффекта)	271
3.8	Облас	ть диэлектрических потерь	272
	3.8.1	Границы области диэлектрических потерь	272
	3.8.2	Волновое сопротивление (область диэлектрических	
		потерь)	274
	3.8.3	Влияние диэлектрических потерь на результаты	
		рефлектометрических измерений	278
	3.8.4	Постоянная распространения (область	
		диэлектрических потерь)	279
	3.8.5	Возможность возникновения сильных резонансов	
		в области диэлектрических потерь	285
	3.8.6	Переходная характеристика (область	
		диэлектрических потерь)	287
	3.8.7	Компромисс между длиной линии и скоростью	
		передачи (область диэлектрических потерь)	291
3.9		ть волноводной дисперсии	292
	3.9.1	Границы области волноводной дисперсии	292
3.10	-	ничные точки рабочих областей	294
3.11		цип эквивалентности передающих сред	297
3.12	Масш	габирование проводниковых передающих структур на	
	основе	е меди	303
3.13		габирование волоконно-оптических кабелей	308
3.14		ная коррекция: пример кросс-платы с длинными	
		ными дорожками	309
3.15	5 Адаптивная коррекция: трансивер компании Accelerant Networks 31		

Глава	4. Часто	отное моделирование	317
4.1	Преж	кде чем приступать к нелинейному моделированию	317
4.2	Мето	ды приближенного преобразования Фурье	320
4.3	Кван	тование времени	322
4.4	Другі	ие ограничения, налагаемые алгоритмом БПФ	325
4.5	Норм	пирование результатов выполнения процедуры БПФ	325
	4.5.1	Вывод нормирующих коэффициентов ДПФ	326
4.6	Поле	зные парные функции преобразования Фурье	327
4.7	Эффе	ект неадекватной частоты квантования по времени	331
4.8	Прим	пер реализации частотного моделирования	333
4.9	Поле	зные мелочи	336
	4.9.1	Что делать, если из-за большой величины групповой	
		задержки сигнал выползает за пределы временного окна	336
	4.9.2	Как выполнить преобразование в случае	
		произвольной последовательности данных	336
	4.9.3	Как сдвинуть временные кривые сигналов	337
	4.9.4	Моделирование более сложных систем?	338
	4.9.5	Моделирование дифференциальной передачи сигналов	338
4.1	0 Пров	ерьте, правильно ли работает используемая вами	
	прогр	рамма БПФ	339
Глава	5. Печат	гные дорожки	341
5.1	Распр	ространение сигнала в печатной линии передачи	343
	5.1.1	Волновое сопротивление и постоянная задержки	343
	5.1.2	Резистивные эффекты	344
	5.1.3	Диэлектрические эффекты	359
	5.1.4	Смешанное влияние поверхностных	
		и диэлектрических потерь	375
	5.1.5	Типы волн, отличные от ТЕМ	377
5.2	Пред	ельно достижимая длина линии передачи	385
	5.2.1	Кодирование данных по стандарту SONET	390
5.3	Шум	ы и взаимные помехи в печатных линиях	394
	5.3.1	Печатная дорожка: отражения	394
	5.3.2	Перекрестные помехи в печатных линиях	424
5.4	Соед	инители, используемые в печатных платах	435
	5.4.1	Согласованность	435
	5.4.2	Зазоры вокруг сквозных отверстий	438
	5.4.3	Измерения в разъемах	441
	5.4.4	Клиновидные согласующие переходы	443
	5.4.5	Разъемы двустороннего монтажа	448
	5.4.6	Заземление экранов кабелей	449

5.5	Моле.	лирование межслойных перемычек	452
	5.5.1	Дифференциальные параметры межслойной перемычки	452
	5.5.2	Три модели межслойной перемычки	455
	5.5.3	Незадействованные межслойные перемычки	459
	5.5.4	Расчетные данные емкости межслойной перемычки	461
	5.5.5	Расчетные данные индуктивности межслойной	
		перемычки	469
5.6	Будуп	цее внутрикристалльных межсоединений	479
Глава 6	. Дифф	еренциальная передача сигналов	483
6.1	Одно	проводные цепи	483
6.2	Двухі	проводные цепи	490
6.3	Дифф	реренциальная схема передачи сигналов	492
6.4		реренциальные и синфазные напряжения и токи	497
6.5		ость распространения дифференциального	
	и син	фазного сигналов	500
6.6	Синф	азный баланс	500
6.7	Диапа	азон входного сигнала по синфазному напряжению	501
6.8	Превр	ращение дифференциального сигнала в синфазный,	
	и нао	борот	502
6.9	Дифф	реренциальное сопротивление	504
	6.9.1	Связь между нечетным и развязанным сопротивлениями	507
	6.9.2	Почему нечетное сопротивление всегда меньше	
		развязанного сопротивления	508
	6.9.3	Отражения на стыках дифференциальных линий	
		передачи	508
6.10	Топол	погии двухпроводных печатных линий	510
	6.10.1	Импеданс дифференциальной (микрополосковой)	
		структуры	511
	6.10.2	Полосковая линия со связью по боковой стороне	
		дорожек	516
	6.10.3	Разнесение дорожек дифференциальной пары	524
	6.10.4	Полосковая линия со связью по широкой стороне	
		дорожек	528
6.11	Облас	сти применения дифференциальных печатных линий	533
	6.11.1	Согласование с внешней симметричной линией	
		дифференциальной передачи	534
	6.11.2	Нейтрализация дребезга земли	535
	6.11.3	Снижение уровня радиоизлучений с помощью	
		дифференциальной передачи сигналов	535
	6.11.4	Передача сигнала через разъем, создающий помехи	538

	6.11.5	Уменьшение расфазировки тактовых импульсов	541
	6.11.6	Снижение локальной перекрестной связи	543
	6.11.7	Хороший справочник по линиям передачи	546
	6.11.8	Дифференциальная передача синхросигналов	546
	6.11.9	Дифференциальное согласование	548
	6.11.10	Дифференциальная линия: разворот токов	552
	6.11.11	Расфазировка, создаваемая поворотами	
		дифференциальной пары дорожек	554
	6.11.12	Когда задержка приносит пользу	556
6.12	Кабелі	ьные соединения оборудования	559
	6.12.1	Плоские кабели на основе витой пары	561
	6.12.2	Защищенность от больших напряжений сдвига земли	562
	6.12.3	Подавление внешних радиочастотных помех	565
	6.12.4	Дифференциальные приемники обладают	
		исключительной нечувствительностью к потерям,	
		обусловленным поверхностным эффектом, и иным	
		высокочастотным потерям	566
6.13	Технол	погия низковольтной дифференциальной передачи	
	сигнал	IOB	568
	6.13.1	Выходные уровни	568
	6.13.2	Синфазный сигнал на выходе передатчика	570
	6.13.3	Допустимый уровень синфазных помех	571
	6.13.4	Допустимый уровень дифференциальных помех	571
	6.13.5	Гистерезис	572
	6.13.6	Требования к точности сопротивлений	572
	6.13.7	Паразитные излучения дорожек	576
	6.13.8	Время установления сигнала	577
	6.13.9	Входная емкость	577
		Расфазировка	577
	6.13.11	Защита от нарушений режима работы	578
Глава 7	. Общие	стандарты кабельных сетей	581
7.1	Архит	ектура стандартных кабельных сетей	585
7.2	Расчет	бюджета "сигнал-шум"	590
7.3	Словај	рь терминов, используемых в технике кабельных сетей	591
7.4	Предп	очтительные комбинации типов кабеля	594
7.5	Часто	задаваемые практические вопросы по кабельным сетям	595
7.6	Перек	рещивание пар	597
7.7	Кабелі	и, разрешенные к прокладке в нише над подвесными	
	потолн	сами	599
7.8	Прокл	адка кабелей на неохлаждаемом чердаке	601

7.9	Часто	задаваемые вопросы: старые типы кабелей	601
Гпава 8	100-ox	иный симметричный кабель на основе витой пары	605
8.1		остранение сигнала в UTP-кабеле	607
0.1	8.1.1	Модель UTP-кабеля	609
	8.1.2	Подгонка модели распространения сигнала	007
	0.1.2	в проводниковой линии	612
8.2	Прим	вер линии передачи на неэкранированной витой паре:	012
0.2	_	арт 10BASE-T	616
8.3		ы и взаимные помехи в кабельных сетях на основе	
	-	анированной 100-омной витой пары (UTP)	623
	8.3.1	UTP-кабель: отражения на дальнем конце	624
	8.3.2	UTP-кабель: отражения на ближнем конце	629
	8.3.3	UTP-кабель: использование гибридных схем	637
	8.3.4	UTP-кабель: перекрестная помеха на ближнем конце	
		(NEXT)	644
	8.3.5	UTP-кабель: внешние перекрестные помехи	648
	8.3.6	UTP-кабель: перекрестная помеха на дальнем конце	
		(FEXT)	649
	8.3.7	Суммарная мощность перекрестных помех на	
		ближнем конце (NEXT) и равноуровневых	
		перекрестных помех на дальнем конце (ELFEXT)	653
	8.3.8	UTP-кабель: радиочастотные помехи	653
	8.3.9	UTP-кабель: паразитные излучения	658
8.4		мы для UTP-кабелей	660
8.5		осы, связанные с экранированием	664
8.6		ние повышенной температуры на характеристики	
	UTP-	кабеля категории 3	665
Глава 9	. 150-on	иный кабель STP-A	667
9.1	Распр	остранение сигнала в 150-омном кабеле STP-A	668
9.2	150-o	мный кабель STP-A: шумы и взаимные помехи	668
9.3	150-o	мный кабель STP-A: расфазировка	670
9.4	150-o	мный кабель STP-A: паразитное излучение	
	и безо	опасность эксплуатации	671
9.5	150-o	мный кабель STP-A в сравнении с UTP-кабелем	672
9.6	Разъе	мы для 150-омного кабеля STP-A	673
Глава 1	0. Коак	сиальный кабель	677
10.1	Распр	остранение сигнала в коаксиальном кабеле	679
	10.1.1	Многожильные центральные проводники	690
	10.1.2		691

	10.1.3	Отклики на статью "Почему именно 50 Ом?"	694
10.2	Шумь	и наводки в коаксиальном кабеле	698
	10.2.1	Коаксиальный кабель: отражения на дальнем конце	698
	10.2.2	Коаксиальный кабель: радиочастотные наводки	699
	10.2.3	Коаксиальный кабель: паразитное излучение	699
	10.2.4	Коаксиальный кабель: вопросы безопасности	700
10.3	Разъем	иы для коаксиального кабеля	703
Глава 1	1. Волог	конно-оптический кабель	709
11.1	Техно.	логия изготовления оптического волокна	710
11.2	Харак	теристики готового оптического волокна	712
11.3	Конст	рукция волоконно-оптического кабеля	714
11.4	Рабоч	ие длины волны	717
11.5	Много	омодовый волоконно-оптический кабель	719
	11.5.1	Распространение сигнала в многомодовом	
		оптическом волокне	721
	11.5.2	Почему оптическое волокно с параболическим	
		профилем показателя преломления лучше	
		оптического волокна со ступенчатым профилем?	727
	11.5.3	Стандарты на многомодовое оптическое волокно	729
	11.5.4	Какими соображениями оправдывается	
		использование 50-микронного оптического волокна	731
	11.5.5	Бюджет оптических характеристик для	
		многомодового волокна	733
	11.5.6	Джиттер	750
	11.5.7		
		волоконно-оптической линии	752
	11.5.8	Безопасность при работе с многомодовой	
		волоконно-оптической линией связи	754
	11.5.9	Многомодовое оптическое волокно с лазерным	
		источником	754
		VCSEL-диоды	758
	11.5.11	Разъемы для многомодовых волоконно-оптических	
		кабелей	759
11.6		одовый волоконно-оптический кабель	761
	11.6.1	Распространение сигнала в одномодовом волокне	762
	11.6.2	Шум и взаимные помехи в одномодовом оптическом	
		волокне	764
	11.6.3	Безопасность при работе с одномодовой	=
		волоконно-оптической линией связи	764

		11.6.4	Разъемы для одномодовых волоконно-оптических	
			кабелей	764
Гл	ава 1	2. Распр	ределение сигналов тактовой синхронизации	765
	12.1	Еще ч	ипсов, пожалуйста	769
	12.2	Элеме	нтарная математика расфазировки синхросигналов	771
	12.3	Повто	рители тактовых импульсов	779
		12.3.1	Активная коррекция расфазировки	784
		12.3.2	Повторители тактовых импульсов с нулевой задержкой	786
		12.3.3	Компенсация длины линии передачи	787
	12.4	Сравн	ительный анализ задержек полосковой	
		и микј	рополосковой линий	790
	12.5	Важно	ость согласования линий синхронизации	793
	12.6	Влиян	ие зоны неопределенности порога приемника	
		синхро	осигнала	797
	12.7	Эффен	ст составной согласующей нагрузки	798
	12.8	Предн	амеренная коррекция задержки	801
		12.8.1	Элементы фиксированной задержки	801
		12.8.2	Настраиваемые элементы задержки	804
		12.8.3	Автоматически программируемые элементы задержки	807
		12.8.4	Зигзагообразные линии задержки	809
		12.8.5	Взаимная связь изломов дорожки	812
	12.9	•	ждение одновременно нескольких линий,	
		соглас	ованных на стороне источника	816
		12.9.1	Разветвлять или не разветвлять	820
		12.9.2	Работа на две нагрузки	828
	12.1	0 Шлейс	фовое распределение сигнала тактовой синхронизации	831
		12.10.1	Подробный анализ шлейфовой схемы распределения	
			сигнала тактовой синхронизации	834
	12.1	 Джитт 	•	840
			Когда джиттер синхросигнала становится важным	843
			Измерение джиттера сигнала тактовой синхронизации	858
	12.1		рация напряжения питания источников	
		-	осигналов, повторителей и систем ФАПЧ	870
			Качественное питание	873
			Чистое питание	876
	12.1		амеренная модуляция тактового сигнала	878
		12.13.1	Отклики на статью "Преднамеренная модуляция	
			тактового сигнала"	881
			Тактовые сигналы, свободные от джиттера	884
	12.1	4 Переда	ача сигналов пониженного напряжения	886

	12.15	Защи	та линий синхронизации от перекрестных помех	887
	12.16	Сниж	ение электромагнитных излучений	888
Ел	ава 1:	3. Сре л	ства и методы имитационного моделирования во вре-	
		ой обл		893
	13.1	"Звон	" в новую эру	893
	13.2	Проце	есс моделирования целостности сигнала	895
		13.2.1	Как определить необходимый уровень детализации модели?	897
		13.2.2	Что происходит после выделения параметров?	897
		13.2.3	Предупреждение	899
	13.3	Mexai	низм, лежащий в основе моделирования	900
		13.3.1	Шаг за шагом — вперед	902
		13.3.2	Недостатки алгоритмов, используемых в программах моделирования типа SPICE	903
		13.3.3	Линии передачи	906
		13.3.4	Критическая оценка результатов моделирования	908
		13.3.5	Используйте SPICE рационально	909
	13.4		(Унифицированное описание внешних электрических истров компонентов)	910
		13.4.1	Что представляет собой IBIS	910
		13.4.1	_	912
		13.4.3	Что нравится в IBIS	912
		13.4.4	•	913
		13.4.5	Как поддержать IBIS	914
	13.5		прошлое, настоящее и будущее	915
	13.3	13.5.1	Исторический обзор развития IBIS	916
		13.5.2		917
			Направление развития IBIS в будущем	918
	13.6		проблемы, связанные с интерполяцией	919
	13.7		проблемы, связанные с комбинационными	
			утационными помехами	924
	13.8	Пробл	лема электромагнитной совместимости	927
		13.8.1	Имитационное моделирование электромагнитных помех	927
	13.9	Резон	анс в структуре, образованной слоями питания и земли	929

Содержание	17
Литература	933
На заметку	941

На за	метку	941
Приложение А. Создание отдела целостности сигналов Приложение Б. Расчет углового коэффициента кривой потерь		977
		981
Приложение В. Анализ методом четырехполюсников		983
B.1	Простые варианты цепей, имеющих отношение к линии	
	передачи	985
B.2	Полностью скомпонованная линия передачи	987
B.3	Сложные конфигурации	989
Приложение Г. Точность П-модели		991
Γ.1	П-модель линии передачи в LC-области	993
Приложение Д. Функция ошибок $\operatorname{erf}()$		995

Предметный указатель

997