Предисловие	12
Введение	17
Глава 1. Данные, типы, структуры и ссылки	19
1.1. Введение	19
1.2. Данные и их роль в реальном мире	19
1.2.1. Типы данных, определяемые условиями реального мира	19
1.2.2 Структуры данных в реальном мире	20
1.3. Использование макросов: #define	21
1.4. Поддержка типов в языках программирования	22
1.4.1. Синонимы	22
1.4.2. Нумерованные типы	23
1.5. Поддержка структур данных в языках программирования	24
1.5.1. Массивы	24
1.5.2. Записи	25
1.5.3. Массивы записей	27
1.5.4. Указатели и управление памятью	28
1.6. Хранение данных, ключи и ячейки памяти	36
1.6.1. Работа с записями большого размера, хранящимися в массивах	36
1.6.2. Хранение изображений	38
1.6.3. Хранение URL	39
1.6.4. Хранение записей на диске	39
1.6.5. Хранение записей с использованием динамического	
распределения памяти	39
1.7. Резюме	43
Глава 2. Абстрактные типы данных: игра в шашки	45
2.1. Введение	45
2.2. Определение	45
2.3. Доска для игры в шашки: пример использования	
абстрактного типа данных	46
2.3.1. Типы, используемые для поддержки игры в шашки	46
2.3.2. Определение абстрактного типа данных	48
2.3.3. Построение сложных операций на базе примитивов	51
2.3.4. Реализация Board T	55
2.3.5. Альтернативные реализации	58
2.4. Значения абстрактных типов ланных	60

2.5. Абстрактные типы данных и языковая поддержка 2.6. Резюме	61 61
Глава 3. Абстрактные типы данных: определения,	
контейнеры и прикладные данные	65
3.1. Введение	65
3.2. Определения и аналогии	65
3.2.1. Определения	65
3.2.2. Аналогии из других сфер деятельности	66
3.3. Абстрактный тип данных Sequence_T	67
3.3.1. Определение абстрактного типа данных Sequence_T	68
3.3.2. Тип контейнера и чистый полиморфизм	71
3.4. Тестирование Sequence_T	72
3.5. Проектирование и реализация Sequence_T	75
3.5.1. Типы и структуры данных	75
3.5.2. Процедуры	7
3.6. Высокоуровневые операции на Sequence_T	80
3.7. Освобождение памяти	81
3.8. Структура программы и абстрактные типы данных	82
3.9. Резюме	84
Глава 4. Реализация абстрактных типов данных	
посредством динамических структур	85
4.1. Введение	8.5
4.2. Связный список	85
4.3. Реализация Sequence_T на базе связного списка	87
4.3.1. Диаграммы	87
4.3.2. Коды структур	88
4.4. Проектирование и реализация операций на Sequence_T	89
4.4.1. Реализация Create_Sequence	90
4.4.2. Реализация Q_Еmpty	90
4.4.3. Реализация Go_To_Next	9
4.4.4. Реализация Append_After_Current	93
4.5. Резюме	10
Глава 5. Стек: тип данных, базирующийся	
на последовательности	103
5.1. Введение	103
5.2. Зачем нужен стек	104
5.3. Спецификация Stack T	100
5.3.1. Полный набор операций на Stack Т	100
5.3.2. Полная спецификация Stack Т	10
· · · · · · · · · · · · · · · · · · ·	

5.4. Реализация Stack Т на базе Sequence Т	108
5.5. Лексический анализ	110
5.5.1. Символы, лексический анализ и лексемы	110
5.5.2. Простой лексический анализатор	111
5.6. Инфиксная, постфиксная и префиксная запись выражений	113
5.7. Использование стека для организации арифметических вычислений	115
5.7.1. Описание и реализация Element_T как ArithToken_T	115
5.7.2. Преобразование инфиксной записи в постфиксную	119
5.7.3. Вычисление выражений, представленных в постфиксном виде	123
5.8. Абстрактный тип данных Queue_T	124
5.9. Резюме	126
Глава 6. Рекурсия	127
6.1. Введение	127
6.2. Рекурсия: определение и пример использования	128
6.3. Еще один пример рекурсии и его реализация на языке С++	129
6.4. Поддержка рекурсивных вызовов	131
6.5. Решение задач с помощью рекурсии	132
6.5.1. "Ханойская башня"	133
6.5.2. Размножение блобов	141
6.6. Рекурсивные операции со стеком	145
6.6.1. Рекурсивный вывод данных Stack_T	145
6.6.2. Рекурсивный поиск в стеке	146
6.7. Задача заполнения рюкзака	147
6.7.1. Формулировка задачи	148
6.7.2. Решение упрощенной задачи заполнения рюкзака	148
6.8. Резюме	152
Глава 7. Бинарное дерево поиска: рекурсивно	
определяемый абстрактный тип данных	153
7.1. Введение	153
7.2. Рекурсивные структуры	153
7.3. Древовидные структуры	154
7.3.1. Использование деревьев	154
7.3.2. Определение древовидной структуры	158
7.3.3. Бинарное дерево	160
7.4. Бинарное дерево поиска	162
7.4.1. Определение бинарного дерева поиска	162
7.4.2. Поиск элемента в составе дерева	164
7.4.3. Включение элемента	167
7.4.4. Удаление элемента	169
7.5. Время поиска элемента, принадлежащего структуре BST_T	176
7.6. Резюме	178

Глава 8. Реализация ВТ_Т и модификация В SТ_Т	179
8.1. Введение	179
8.2. Реализация ВТ Т	179
8.2.1. Структура данных	179
8.2.2. Реализация операций	181
8.3. Высокоуровневые процедуры и функции	184
8.3.1. Обход дерева в порядке возрастания ключей	184
8.3.2. Обход "снизу вверх"	186
8.3.3. Обход "сверху вниз"	188
8.3.4. Селективный обход дерева	189
8.3.5. Подсчет узлов дерева	189
8.3.6. Построение нового дерева, составленного из выбранных записей	190
8.4. Переход от функциональной реализации к процедурной	193
8.5. Исключение рекурсии	197
8.5.1. Включение элемента без использования рекурсии	198
8.5.2. Удаление элемента без использования рекурсии	201
8.6. Резюме	205
Глава 9. Расширения вст_т и их использование	207
9.1. Введение	207
9.2. Итеративный обход BST_T	207
9.2.1. Итерации	207
9.2.2. Построение спецификации Iterator_T	210
9.2.3. Реализация Iterator_T	211
9.3. Структуры на одном наборе данных	213
9.3.1. Объединение клубов	214
9.3.2. Работа с несколькими структурами BST_T	215
9.3.3. Использование нескольких ключей	216
9.3.4. Передача в качестве параметра указателя на функцию	217
9.4. Повторяющиеся ключевые значения в BST_T	219
9.5. Резюме	222
Глава 10. Сортировка и поиск	223
10.1. Введение	223
10.2. Описание проблемы	223
10.2.1. Поиск	224
10.2.2. Сортировка	224
10.3. Сортировка и поиск в линейных структурах	224
10.3.1. Поиск в неупорядоченном списке	225
10.3.2. Поиск в упорядоченном списке	226
10.3.3. Сортировка SearchDB_T	228
10.3.4. Эвристические методы последовательного поиска	230
10.3.5. Факторы, затрудняющие сортировку связных списков,	
и поиск элементов в них	232

10.4. Поиск в массивах	232
10.4.1. Последовательный поиск в неупорядоченном массив	ge 232
10.4.2. Последовательный поиск в упорядоченном массиве	233
10.4.3. Поиск в упорядоченном массиве методом дихотоми	и 233
10.4.4. Эффективность поиска методом дихотомии	
в упорядоченном массиве	235
10.5. Сортировка массива	237
10.5.1. Пузырьковая сортировка	237
10.5.2. Быстрая сортировка	240
10.5.3. Процедура Partition	241
10.5.4. Производительность алгоритма быстрой сортировки	245
10.5.5. Быстрый поиск, поиск методом дихотомии	
и бинарное дерево поиска	247
10.5.6. Слияние отсортированных массивов	249
10.5.7. Сортировка слиянием	250
10.6. Поразрядная сортировка	252
10.6.1. Выполнение поразрядной сортировки	253
10.6.2. Реализация поразрядной сортировки	254
10.6.3. Производительность поразрядной сортировки	255
10.7. Хеширование	257
10.7.1. Хеш-таблицы и хеш-функции	257
10.7.2. Реализация хеш-таблиц	259
10.7.3. Выбор хеш-функции	260
10.8. Обработка реальных данных	262
10.9. Резюме	262
Глава 11. Абстрактный тип данных Graph_T	265
11.1. Введение	265
11.2. Поезда, мосты и графы	265
11.2.1. Абстрагирование и представление основных поняти	й 265
11.2.2. Дополнительные примеры	267
11.2.3. Формальное определение графа	268
11.3. Спецификация Graph T	269
11.3.1. Типы VertDataRec_T и ArcDataRec_T	269
11.3.2. Graph T	270
11.3.3. Traveller T	270
11.4. Реализация Graph T	272
11.4.1. Построение Graph Т	272
11.4.2. Маркеры	274
11.4.3. Реализация Traveller Т	275
11.5. Использование Graph T	279
11.6. Алгоритм Дейкстры: эффективный обход графа	284
11.6.1. Постановка задачи	284
11.6.2. Релаксация	285

11.6.3. Инициализация	287
11.6.4. Алгоритм Дейкстры	289
11.6.5. Результаты применения алгоритма Дейкстры	293
11.7. Резюме	296
Глава 12. Что дальше	297
12.1. Введение	297
12.2. Материал, изложенный в книге	297
12.3. Направления дальнейшей работы	299
12.3.1. Дальнейшее изучение структур данных	299
12.3.2. Использование структур данных	299
12.3.3. Использование алгоритмов	299
12.3.4. Объектно-ориентированное программирование	300
12.4. Желаю успехов	301
Предметный указатель	302