Содержание

Введение	14
На кого рассчитана эта книга	15
Структура книги	15
Ждем ваших отзывов!	17
Часть I. Общие сведения	19
Глава 1. Знакомство с электродвигателем	21
1.1. Историческая справка	22
1.1.1. Компас Эрстеда	23
1.1.2. Самовращающийся ротор Йедлика	23
1.2. Конструкция электродвигателя	24
1.2.1. Внешний вид	25
1.2.2. Внутренняя структура	26
1.3. Обзор электродвигателей	27
1.3.1. Электродвигатели постоянного тока	28
1.3.2. Электродвигатели переменного тока	29
1.4. Структура и цели книги	29
1.5. Резюме	30
Глава 2. Основные характеристики электродвигателей	33
2.1. Вращающий момент и угловая скорость	34
2.1.1. Сила	34
2.1.2. Вращающий момент	35
2.1.3. Угловая скорость	38
2.1.4. Зависимость вращающего момента от частоты оборотов	39
2.2. Магниты	40
2.3. Схема замещения электродвигателя	44
2.3.1. Электрические потери	44
2.3.2. ПротивоЭДС	46
2.4. Мощность и КПД	47
2.4.1. Работа	47
2.4.2. Механическая мощность	48
2.4.3. Электрическая мощность	49
2.4.4. Коэффициент полезного действия	49
2.5. Резюме	51
Часть II. Конструкция электродвигателя	53
Глава 3. Электродвигатели постоянного тока	55
3.1. Основные характеристики двигателей постоянного тока	56
3.1.1. Вращающий момент и электрический ток	56

Содержание	7
3.1.2. Скорость (частота вращения) и напряжение	58
3.1.3. Взаимосвязь коэффициентов K_T и K_V	59
3.1.4. Устройства переключения	60
3.1.5. Широтно-импульсная модуляция (ШИМ)	64
3.2. Коллекторные электродвигатели	66
3.2.1. Механическая коммутация	66
3.2.2. Типы коллекторных электродвигателей	69
3.2.3. Преимущества и недостатки коллекторных	
электродвигателей	72
3.2.4. Система управления	73
3.3. Вентильные электродвигатели	76
3.3.1. Конструкция вентильных электродвигателей	77
3.3.2. Внутрироторные и внешнероторные вентильные	
электродвигатели	80
3.3.3. Управление вентильными электродвигателями	83
3.4. Электронный регулятор хода (ESC)	88
3.4.1. Стабилизация напряжения	90
3.4.2. Программирование регулятора хода	90
3.5. Аккумуляторы	92
3.6. Резюме	94
Глава 4. Шаговые электродвигатели	97
4.1. Шаговый двигатель с постоянными магнитами	98
4.1.1. Конструкция	99
4.1.2. Принципы функционирования	101
4.2. Реактивный шаговый двигатель	103
4.2.1. Конструкция	104
4.2.2. Принципы функционирования	105
4.3. Гибридный шаговый двигатель	106
4.3.1. Конструкция	106
4.3.2. Принципы функционирования	108
4.4. Управление шаговым двигателем	109
4.4.1. Управление биполярным шаговым двигателем	110
4.4.2. Управление униполярным шаговым двигателем	112
4.4.3. Режимы работы шагового двигателя	115
4.5. Резюме	119
Глава 5. Сервоприводы	123
5.1. Любительские сервоприводы	124
5.1.1. Широтно-импульсная модуляция (ШИМ)	125
5.1.2. Аналоговые и цифровые сервоприводы	127

Содержание

5.1.3. Датчик угла поворота (энкодер)	128
5.2. Управление сервоприводом	131
5.2.1. Замкнутая и разомкнутая системы управления	132
5.2.2. Математическая модель системы управления	
сервоприводом	133
5.2.3. Преобразование Лапласа	135
5.2.4. Блок-схемы и функции передачи	138
5.2.5. Функция передачи сервопривода	139
5.3. ПИД-управление	140
5.4. Резюме	143
Глава 6. Электродвигатели переменного тока	145
6.1. Переменный ток	146
6.1.1. Однофазное электропитание	146
6.1.2. Трехфазное электропитание	147
6.2. Многофазный электродвигатель	148
6.2.1. Статор	148
6.2.2. Вращение магнитного поля	149
6.2.3. Синхронная частота вращения	152
6.2.4. Коэффициент мощности	153
6.3. Асинхронный многофазный двигатель	155
6.3.1. Электромагнитная индукция	155
6.3.2. Электрический ток и вращающий момент	156
6.3.3. Короткозамкнутый ротор	157
6.3.4. Фазный ротор	158
6.4. Синхронный многофазный двигатель	160
6.4.1. Синхронный двигатель двойного возбуждения	161
6.4.2. Синхронный двигатель с постоянными магнитами	163
6.4.3. Реактивный синхронный двигатель	164
6.5. Однофазный двигатель	165
6.5.1. Однофазный двигатель с расщепленной фазой	165
6.5.2. Однофазный двигатель с конденсаторным пуском	166
6.5.3. Однофазный двигатель с экранированием полюсов	168
6.6. Управление двигателем переменного тока	169
6.6.1. Электропривод на вихревых токах	170
6.6.2. Частотно-регулируемый электропривод	170
6.6.3. Гармонические искажения в частотно-регулируемом	
электроприводе	173
6.7. Универсальный двигатель	174
6.8. Резюме	175

Содержание	9
Глава 7. Редукторный двигатель и механическая передача	177
7.1. Шестерни и механическая передача	178
7.1.1. Передача энергии	178
7.1.2. Шаг между зубьями	181
7.1.3. Зазор по окружности	182
7.2. Типы механических передач	183
7.2.1. Прямозубая цилиндрическая передача	183
7.2.2. Косозубая цилиндрическая передача	184
7.2.3. Коническая передача	187
7.2.4. Реечная передача	188
7.2.5. Червячная передача	189
7.2.6. Планетарная передача	190
7.3. Редукторные двигатели	192
7.4. Резюме	193
Глава 8. Линейные электродвигатели	195
8.1. Линейный исполнительный механизм	196
8.1.1. Конструкция и рабочие характеристики	198
8.1.2. Линейный исполнительный привод промышленного	
производства	199
8.1.3. Пушка Гаусса	200
8.2. Синхронный линейный двигатель	201
8.2.1. Конструкция	201
8.2.2. Линейный двигатель Yaskawa SGLG	206
8.2.3. Поезд на магнитной подушке (маглев)	208
8.3. Асинхронный (индукционный) линейный двигатель	209
8.3.1. Конструкция и принципы функционирования	210
8.3.2. Поезд на магнитной подушке LINIMO	211
8.4. Униполярный линейный двигатель	213
8.4.1. Конструкция и принципы функционирования	214
8.4.2. Рельсотрон	215
8.5. Резюме	217
Часть III. Электродвигатели в действии	219
Глава 9. Управление электродвигателями с помощью Arduino	221
9.1. Плата Arduino Mega	222
9.1.1. Аппаратные интерфейсы	223
9.1.2. Микроконтроллер ATmega2560	224
9.2. Программирование Arduino Mega	227
9.2.1. Программная среда Arduino	228

9.2.2. Работа со скетчами	231
9.2.3. Написание программ для Arduino	233
9.3. Модуль расширения Arduino Motor Shield	240
9.3.1. Питание для Arduino Motor Shield	241
9.3.2. Двухканальный драйвер на мостовой схеме L298P	242
9.3.3. Управление коллекторным электродвигателем	244
9.4. Управление шаговым двигателем	246
9.4.1. Библиотека Stepper	246
9.4.2. Программа управления шаговым двигателем	249
9.5. Управление сервоприводом	252
9.5.1. Библиотека Servo	252
9.5.2. Программа управления сервоприводом	254
9.6. Резюме	255
Глава 10. Управление двигателями из Raspberry Pi	257
10.1. Обзор Raspberry Pi	258
10.1.1. Аппаратные средства Raspberry Pi	259
10.1.2. Однокристальная система ВСМ2835	260
10.2. Программирование в Raspberry Pi	262
10.2.1. Операционная система Raspbian	263
10.2.2. Язык программирования Python	
и его среда разработки IDLE	264
10.2.3. Интерфейс GPIO	266
10.3. Управление сервоприводом	272
10.3.1. Настройка ШИМ-сигнала	273
10.3.2. Программа управления сервоприводом	276
10.4. Плата расширения RaspiRobot	277
10.4.1. Двойной четырехканальный драйвер двигателей	
постоянного тока L293DD	279
10.4.2. Программное управление RaspiRobot	281
10.4.3. Управление коллекторными двигателями	202
постоянного тока	282
10.4.4. Управление шаговым двигателем	283
10.5. Резюме	286
Глава 11. Управление электродвигателями из BeagleBone Black	289
11.1. Обзор платы BeagleBone Black	290
11.1.1. Общие сведения	290
11.1.2. Однокристальная система АМ3359	292
11.2. Программирование в BeagleBone Black	294
11.2.1. Операционная система Debian	294

Содержание	11
11.2.2. Модуль Adafruit BBIO	296
11.2.3. Доступ к выводам GPIO	297
11.3. Генерирование ШИМ-сигнала	303
11.4. Плата расширения Dual Motor Controller	305
11.4.1. Подключение Dual Motor Controller	
к BeagleBone Black	308
11.4.2. Генерирование ШИМ-сигнала	309
11.4.3. Мостовая схема управления	309
11.4.4. Программа управления электродвигателем	310
11.5. Резюме	313
Глава 12. Электронный регулятор хода на базе Arduino	315
12.1. Конструкция электронного регулятора хода	316
12.2. Коммутирующее устройство	319
12.2.1. Переключатели на МОП-транзисторах	319
12.2.2. Драйвер МОП-транзистора	324
12.2.3. Накопительный конденсатор	327
12.3. Определение положения вала по переходу противоЭДС	
через нулевой уровень	329
12.3.1. Зависимость U_P от напряжения на всех трех обмотках	331
12.3.2. Зависимость U_0 от напряжения на двух обмотках,	
получающих питание	332
12.3.3. Зависимость U_O от напряжения на обмотке с плавающи	
потенциалом и противоЭДС в ней	332
12.3.4. Вычисление противоЭДС и напряжения в виртуальной	
точке	333
12.4. Конструирование платы	334
12.4.1. Монтаж выводных колодок	334
12.4.2. МОП-транзисторы и их драйверы	336
12.4.3. Распознавание перехода через нулевой уровень	337
12.5. Топология печатной платы	338
12.6. Управление вентильным двигателем	339
12.6.1. Организация питания вентильного двигателя 12.6.2. Управление вентильным двигателем из Arduino	340 342
12.0.2. Управление вентильным двигателем из Агашпо 12.7. Резюме	342 347
12.7. Резюме	34/
Глава 13. Конструирование квадрокоптера	349
13.1. Рама	350
13.2. Пропеллеры	352
13.2.1. Динамика вращения пропеллера	352
13.2.2. Выбор пропеллеров	358

13.3. Двигатели	359
13.4. Электронное оборудование	361
13.4.1. Передатчик/приемник	361
13.4.2. Полетный контроллер	366
13.4.3. Электронный регулятор хода (ESC)	370
13.4.4. Аккумуляторы	372
13.5. Сборка квадрокоптера	373
13.6. Резюме	376
Глава 14. Электромобили	377
14.1. Переоборудование автомобиля в электромобиль	378
14.1.1. Электродвигатели	378
14.1.2. Контроллеры (инверторы)	382
14.1.3. Аккумуляторы	383
14.1.4. Трансмиссия	384
14.2. Серийные электромобили	385
14.2.1. Tesla Model S	385
14.2.2. Nissan Leaf	387
14.2.3. BMW i3	389
14.3. Патенты Tesla Motors	391
14.3.1. Управление двигателем через изменение магнитного потока	391
14.3.2. Внутренняя конструкция индукционного двигателя	393
14.3.3. Система управления электромобилем с двумя двигателями	396
14.3.4. Повышение качества производства ротора	397
14.4. Резюме	400
Часть IV. Приложения	403
Приложение А. Электрогенератор	405
Общие сведения	406
Генератор постоянного тока	408
Генератор переменного тока	410
Принцип действия генератора переменного тока	411
Магнитоэлектрические и самовозбуждающиеся генераторы	412
Резюме	415
Приложение Б. Словарь терминов	417
Предметный указатель	425